Induced W_{∞} gravity as a WZNW model

E. Nissimov ${ }^{1}$, S. Pacheva ${ }^{1}$
Department of Physics, Ben-Gurion University of the Negev, Box 653, 84105 Beer Sheva, Israel

and

I. Vaysburd
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

Received 5 February 1992

Abstract

We derive the explicit form of the Wess-Zumino quantum effective action of chiral W_{∞}-symmetric system of matter fields coupled to a general chiral W_{∞}-gravity background. It is expressed as a geometric action on a coadjoint orbit of the deformed group of area-preserving diffeomorphisms on cylinder whose underlying Lie algebra is the centrally-extended algebra of symbols of differential operators on the circle. Also, we present a systematic derivation, in terms of symbols, of the "hidden" SL($\infty ; \mathbb{R}$) Kac-Moody currents and the associated $\operatorname{SL}(\infty, \mathbb{R})$ Sugawara form of energy-momentum tensor component T_{++}as a consequence of the $\operatorname{SL}(\infty ; \mathbb{R})$ stationary subgroup of the relevant W_{∞} coadjoint orbit.

1. Introduction

The infinite-dimensional Lie algebra W_{∞} (and its generalizations $\mathrm{W}_{1+\infty}$ etc.) [1-3] are nontrivial "large N " limits of the associative, but non-Lie, conformal W_{N} algebras [4]. They arise in various problems of two-dimensional physics. The list of their principal applications includes self-dual gravity [5], first hamiltonian structure of integrable KP hierarchy [6], string field actions in the collective field theory approach [7], conformal affine Toda theories [8]. One of the most remarkable manifestations of W_{∞}-type algebras is the recent discovery of a subalgebra of their "classical" limit w_{∞} (the algebra of area-preserving diffeomorphisms) in $c=1$ string theory as symmetry algebra of the special discrete states [9] or as the algebra of infinitesimal deformations of the ground ring [10]. Also, it is worth noting that similar algebras are found also in $D=2$ quasitopological models, such as $D=2$ Yang-Mills [11], where the metric dependence of the partition function degenerates into a dependence on the area only.
It is well known in the mathematical literature [12], that the family of possible deformations $\mathrm{W}_{\infty}(q)$ of the initial "classical" w_{∞} depends on a single parameter q and that, for each fixed value of $q, \mathrm{~W}_{\infty}(q)$ possesses an one-dimensional cohomology with values of \mathbb{R}. In particular, for $q=1$ one finds that $\mathrm{W}_{\infty}(1) \simeq \mathscr{D} \mathscr{O P}\left(\mathbf{S}^{1}\right)$ - the centrally extended algebra of differential operators on the circle, which was recently studied in ref. [13]. The equivalence of $\widetilde{\mathscr{O P P}}\left(\mathrm{S}^{1}\right)$ to the original definition of $\mathrm{W}_{\infty}(1)[1,3]$ was explicitly demonstrated in ref. [14].
In this letter we first derive a WZNW field-theory action $\mathrm{W}_{\mathrm{DOP}\left(\mathrm{S}^{1}\right)}[g]$ on a generic coadjoint orbit of the group $\mathrm{G}=\mathrm{DOP}\left(\mathrm{S}^{1}\right)$. The elements $g(\xi, x ; t)$ of this group for fixed time t are symbols of exponentiated differential operators on \mathbf{S}^{1} and in this sense $\operatorname{DOP}\left(S^{1}\right)$ is the formal Lie group corresponding to the Lie algebra $\mathscr{D O P P}\left(\mathrm{S}^{1}\right)$. As it was shown in ref. [15], the Legendre transform $\Gamma[g]=-W\left[g^{-1}\right]$ of a group coadjoint orbit action $W[g]$ for a general infinite-dimensional group G provides the exact solution for the quantum effective

[^0]action of matter fields possessing an infinite-dimensional Noether symmetry group G_{0} - the "classical" undeformed version of the group G. Thus, our WZNW action $\mathrm{W}_{\mathrm{DOP}\left(\mathrm{S}^{\wedge}\right)}[g]$ is the explicit field-theoretic expression of the induced W_{∞}-gravity effective action. In particular, we show that $\mathrm{W}_{\mathrm{DOP}\left(\mathrm{S}^{1}\right)}[g]$ reduces to the well-known Polyakov's WZNW action of induced $D=2$ gravity in the light-cone gauge [16] when restricting the WZNW field $g(\xi, x ; t)$ to the Virasoro subgroup of $\operatorname{DOP}\left(\mathbf{S}^{1}\right)$. Furthermore, the appearance of the "hidden" $\operatorname{SL}(\infty ; \mathbb{R})$ Kac-Moody symmetry and the associated $\operatorname{SL}(\infty ; \mathbb{R})$ Sugawara form of the T_{++}component of the energymomentum tensor are shown to be natural consequences of the $\operatorname{SL}(\infty ; \mathbb{R})$ stationary subgroup of the pertinent $\operatorname{DOP}\left(\mathbf{S}^{1}\right)$ coadjoint orbit. Also, we present WZNW field-theoretic expressions in terms of $g(\xi, x ; t)$ for the "hidden" currents and T_{++}.

2. Basic ingredients

The object of primary interest is the infinite-dimensional Lie algebra $\mathscr{G}=\mathscr{D O P P}\left(\mathbf{S}^{\mathbf{1}}\right)$ of symbols of differential operators ${ }^{\# 1}$ on the circle \mathbf{S}^{1} with vanishing zero-order part $\mathscr{G}=\left\{X \equiv X(\xi, x)=\sum_{k \geqslant 1} \xi^{k} X_{k}(x)\right\}$. For any pair $X, Y \in \mathscr{G}=\mathscr{D O P P}\left(\mathrm{S}^{1}\right)$ the Lie commutator is given in terms of the associative (and non-commutative) symbol product denoted henceforth by a circle 0 :
$[X, Y] \equiv X \circ Y-Y \circ X, \quad X \circ Y \equiv X(\xi, x) \exp \left(\grave{\partial}_{\xi} \vec{\partial}_{x}\right) Y(\xi, x)$.
In order to determine the dual space $\mathscr{G}^{*}=\mathscr{D} \mathscr{O P} \mathscr{P}^{*}\left(\mathbf{S}^{1}\right)$, let us consider the space $\left.\Psi \mathscr{O} \mathscr{O} \mathbf{S}^{1}\right)=\{U \equiv U(\xi, x)$ $\left.=\sum_{k=1}^{\infty} \xi^{-k} U_{k}(x)\right\}$ of all purely pseudodifferential symbols [17] on S^{1} and the following bilinear form on $\Psi \mathscr{D} \mathcal{O}\left(\mathbf{S}^{1}\right) \otimes \mathscr{D} \mathscr{O}\left(\mathbf{S}^{1}\right):$
$\langle U \mid X\rangle \equiv \int \mathrm{d} x \operatorname{Res}_{\xi} U \circ X=\int \mathrm{d} x \operatorname{Res}_{\xi}\left[\exp \left(-\partial_{x} \partial_{\xi}\right) U(\xi, x)\right] X(\xi, x)$.
The last equality in (2) is due to the vanishing of total derivatives with respect to the measure $\int \mathrm{d} x \operatorname{Res}_{\xi}$, and $\operatorname{Res}_{\xi} U(\xi, x)=U_{1}(x)$. From (2) we conclude that any pseudodifferential symbol of the form $U^{(0)}=\exp \left(\partial_{x} \partial_{\xi}\right)[(1 /$ $\xi) u(x)]$ is "orthogonal" to any differential symbol $X \in \mathscr{D O P P}\left(\mathrm{~S}^{1}\right)$, i.e. $\left\langle U^{(0)} \mid X\right\rangle=0$. Thus, the dual space $\mathscr{G}^{*}=\mathscr{D} \mathscr{O P}{ }^{*}\left(\mathbf{S}^{1}\right)$ can be defined as the factor space $\Psi \mathscr{D} \mathscr{O}\left(\mathbf{S}^{1}\right) \backslash\left[\exp \left(\partial_{x} \partial_{\xi}\right)(1 / \xi) u(x)\right]$ with respect to the "zero" pseudodifferential symbols. In particular, we shall adopt the definition
$\mathscr{G}^{*}=\left[U_{*} ; U_{*}(\xi, x)=U(\xi, x)-\exp \left(\partial_{x} \partial_{\xi}\right)\left(\frac{1}{\xi} \operatorname{Res}_{\xi} U(\xi, x)\right)\right.$ for $\left.\forall U \in \Psi \mathscr{D} \mathcal{O}\right]$.
Having the bilinear form (2) one can define the coadjoint action of \mathscr{G} on \mathscr{G}^{*} via
$\left\langle\operatorname{ad}^{*}(X) U \mid Y\right\rangle=-\langle U \mid[X, Y]\rangle, \quad\left(\operatorname{ad}^{*}(X) U\right)(\xi, x) \equiv[X, U]_{*}$.
Here and in what follows, the subscript (-) indicates taking the part of the symbol containing all negative powers in the ξ-expansion, whereas the subscript $*$ indicates projecting of the symbol on the dual space (3). The Jacobi identity for the coadjoint action ad $^{*}()$ (4) is fulfilled due to the following important property:
$\left[X, \exp \left(\partial_{x} \partial_{\xi}\right)\left(\frac{1}{\xi} u(x)\right)\right]_{-}=\exp \left(\partial_{x} \partial_{\xi}\right)\left(\frac{1}{\xi} \operatorname{Res}_{\xi}\left[X, \exp \left(\partial_{x} \partial_{\xi}\right) \frac{u(x)}{\xi}\right]\right)$,
i.e., the coadjoint action of $\mathscr{D O P P}\left(\mathrm{S}^{1}\right)$ on $\Psi \mathscr{D} O\left(\mathrm{~S}^{1}\right)$ maps "zero" pseudodifferential symbols into "zero" ones.

The central extension in $\tilde{G} \equiv \widetilde{\mathscr{O O P P}}\left(\mathbf{S}^{1}\right)=\mathscr{D O P P}\left(\mathbf{S}^{1}\right) \oplus \mathbb{R}$ is given by the two-cocycle $\omega(X, \quad Y)$ $=-(1 / 4 \pi)\langle\hat{s}(X) \mid Y\rangle$, where the cocycle operator $\hat{s}: \mathscr{G}_{\boldsymbol{G}} \rightarrow \mathscr{G}^{*}$ explicitly reads [13]

[^1]$\hat{s}(X)=[X, \ln \xi]_{*}$.
Let us now consider the Lie group $G=\operatorname{DOP}\left(S^{1}\right)$ defined as exponentiation of the Lie algebra \mathscr{G} of symbols of differential operators on S^{1} :
$G=\left(g(\xi, x)=\operatorname{Exp}[X(\xi, x)] \equiv \sum_{N=0}^{\infty} \frac{1}{N!} X(\xi, x) \circ X(\xi, x) \circ \ldots \circ X(\xi, x)\right)$,
and the group multiplication is just the symbol product $g \circ h$. The adjoint and coadjoint action of $\mathrm{G}=\mathrm{DOP}\left(\mathrm{S}^{1}\right)$ on the Lie algebra $\mathscr{D O P P}\left(\mathbf{S}^{1}\right)$ and its dual space $\mathscr{D} \mathscr{O P}{ }^{*}\left(\mathbf{S}^{1}\right)$, respectively, is given as
\[

$$
\begin{equation*}
[\operatorname{Ad}(g) X]=g \circ X \circ g^{-1}, \quad\left(\operatorname{Ad}^{*}(g) U\right)=\left(g \circ X_{\circ} g^{-1}\right)_{*} \tag{8}
\end{equation*}
$$

\]

The group property of $(8) \operatorname{Ad}^{*}(g \circ h)=\operatorname{Ad}^{*}(g) \mathrm{Ad}^{*}(h)$ easily follows from the "exponentiated" form of the identity (5).

After these preliminaries we are ready to introduce the two interrelated fundamental objects $S[g]$ and $Y[g]$ entering the construction of the geometric action on a coadjoint orbit of G. To this end we shall follow the general formalism for geometric actions on coadjoint orbits of arbitrary infinite-dimensional groups with central extensions proposed in refs. [18,19]. Namely, $S\left[g\right.$] is a nontrivial \mathscr{G}^{*}-valued one-cocycle on the group G (also called finite "anomaly" or generalized schwarzian), whose infinitesimal form is expressed through the Liealgebra \mathscr{G} cocycle operator $\hat{s}()$ (6) (infinitesimal "anomaly"):
$S[g \circ h]=S[g]+\mathrm{Ad}^{*}(g) S[h],\left.\frac{\mathrm{d}}{\mathrm{d} t} S[\operatorname{Exp}(t X)]\right|_{t=0}=\hat{s}(X)$.
The explicit solution of eq. (9) reads
$S[g]=-\left([\ln \xi, g] \circ g^{-1}\right)_{*}$.
Further, $Y[g]$ is a \mathscr{G}-valued one-form on the group manifold which is related to the \mathscr{G}^{*}-valued group one-cocycle $S[g]$ via the following basic exterior-derivative equation:
$\mathrm{d} S[g]=-\operatorname{Ad}^{*}(g) \hat{s}\left(Y\left[g^{-1}\right]\right)$.
The integrability condition for (11) implies that the one-form $Y[g]$ satisfies the Maurer-Cartan equation and that it is a $\mathscr{D O P P}\left(\mathrm{S}^{1}\right)$-valued group one-cocycle:
$\mathrm{d} Y[g]=\frac{1}{2}[Y[g], Y[g]], \quad Y[g \circ h]=Y[g]+\operatorname{Ad}(g) Y[h]$.
From (6) and (10)-(12) one easily finds
$Y[g]=\mathrm{d} g(\xi, x) \circ g^{-1}(\xi, x)$.
At this point it would be instructive to explicate formulas (6), (10) and (13) when the elements of $G=\operatorname{DOP}\left(S^{1}\right)$ and $\mathscr{G}=\mathscr{D} \mathscr{O P}\left(S^{1}\right)$ are restricted to the Virasoro subgroup (subalgebra, respectively):
$X(\xi, x)=\xi \omega(x) \leftrightarrow \omega(x) \partial_{x} \in \operatorname{Vir}$,
$g(\xi, x)=\operatorname{Exp}[\xi \omega(x)] \leftrightarrow F(x) \equiv \exp \left[\omega(x) \partial_{x}\right] x \in \operatorname{Diff}\left(\mathbf{S}^{1}\right)$.
Substituting (14) into (6), (10) and (13), one obtains
$\left.Y[g]\right|_{g(\xi, x)=\operatorname{Exp}[\xi \omega(x)]}=\xi \frac{\mathrm{d} F(x)}{\partial_{x} F(x)}, \quad \hat{s}(X)=[\xi \omega(x), \ln \xi]_{*}=-\frac{1}{6} \xi^{-2} \partial_{x}^{3} \omega(x)+\ldots$,
$\left.S[g]\right|_{g(\xi, x)=E \operatorname{Exp}[\xi \omega(x)]}=-\frac{1}{6} \xi^{-2}\left[\frac{\partial_{x}^{3} F}{\partial_{x} F}-\frac{3}{2}\left(\frac{\partial_{x}^{2} F}{\partial_{x} F}\right)^{2}\right]+\ldots$.

The dots in (15) indicate higher order terms $O\left(\xi^{k}\right), k \geqslant 3$, which do not contribute in bilinear forms with elements of Vir (14).

3. WZNW action of W_{∞} gravity

According to the general theory of group coadjoint orbits [20], a generic coadjoint orbit $\mathcal{O}_{\left(U_{0, c}\right)}$ of G passing through a point $\left(U_{0}, c\right)$ in the extended dual space $\widetilde{\mathscr{G}}^{*}=\mathscr{G}^{*} \oplus \mathbb{R}$:
$\mathcal{U}_{\left(U_{0, c}\right)} \equiv\left\{(U(g), c) \in \widetilde{\mathscr{G}}^{*} ; \quad U(g)=\operatorname{Ad}^{*}(g) U_{0}+c S[g]\right\}$
has a structure of a phase space of an (infinite-dimensional) hamiltonian system. Its dynamics is governed by the following lagrangian geometric action written solely in terms of the interrelated fundamental group and algebra cocycles $S[g], Y[g], \hat{s}()$ (cf. eqs. (6), (9)-(13)) [18,19]:

$$
\begin{equation*}
W[g]=\int_{\mathscr{P}}\left\langle U_{0} \mid Y\left[g^{-1}\right]\right\rangle-c \int\left[\langle S[g] \mid Y[g]\rangle-\frac{1}{2} \mathrm{~d}^{-1}(\langle\hat{s}(Y[g]) \mid Y[g]\rangle)\right] . \tag{17}
\end{equation*}
$$

The integral in (17) is over one-dimensional curve \mathscr{L} on the phase space $\mathscr{\theta}_{\left(U_{0, c}\right)}(16)$ with a "time-evolution" parameter t. Along the curve \mathscr{L} the exterior derivative becomes $\mathrm{d}=\mathrm{d} t \partial_{t}$. Also, d^{-1} denotes the cohomological operator of Novikov [21] - the inverse of the exterior derivative, defining the customary multi-valued term present in any geometric action on a group coadjoint orbit.

In the present case of $\mathrm{G}=\operatorname{DOP}\left(\mathrm{S}^{1}\right)$, the co-orbit action (17) takes the following explicit form, which (as discussed in section 1) is precisely the Wess-Zumino action for induced W_{∞}-gravity (the explicit dependence of symbols on ($\xi, x ; t$) will in general be suppressed below):
$W[g]=-\int \mathrm{d} t \mathrm{~d} x \operatorname{Res}_{\xi} U_{0} \circ g^{-1} \circ \partial_{t} g$

$$
\begin{equation*}
+\frac{c}{4 \pi} \int_{\mathscr{\mathscr { L }}} \int \mathrm{d} x \operatorname{Res}_{\xi}\left([\ln \xi, g] \circ g^{-1} \circ \partial_{t} g_{\circ} g^{-1}-\frac{1}{2} \mathrm{~d}^{-1}\left\{\left[\ln \xi, \mathrm{~d} g_{\circ} g^{-1}\right] \wedge\left(\mathrm{d} g_{\circ} g^{-1}\right)\right\}\right) . \tag{18}
\end{equation*}
$$

The physical meaning of the first term on the RHS of (18) is that of coupling of the chiral W_{∞} Wess-Zumino field $g=g(\xi, x ; t)$ to a chiral W_{∞}-gravity "background". For simplicity, we shall consider henceforth the case $U_{0}=0$.

It is straightforward to obtain, upon substitution of eqs. (14), (15), that the restriction of $g(\xi, x ; t)$ to the Virasoro subgroup reduces the W_{∞} Wess-Zumino action (18) to the well-known Polyakov's Wess-Zumino action of induced $D=2$ gravity [16,22].

The group cocycle properties (eqs. (9), (12)) of $S[g]$ (10) and $Y[g]$ (13) imply the following fundamental group composition law for the W_{∞} geometric action (18):
$W[g \circ h]=W[g]+W[h]-\frac{c}{4 \pi} \int \mathrm{~d} t \mathrm{~d} x \operatorname{Res}_{\xi}\left([\ln \xi, h] \circ h^{-1} \circ g^{-1} \circ \partial_{t} g\right)$.
Eq. (19) is a particular case for W_{∞} of the group composition law for geometric actions on coadjoint orbits of arbitrary infinite-dimensional groups with central extensions [19]. It generalizes the famous Polyakov-Wiegmann group composition law [23] for ordinary $D=2$ WZNW models.

Using the general formalism for co-orbit actions in refs. [18,19] we find that the basic Poisson brackets for $S[g]$ (10) following from the action (18) read

$$
\begin{equation*}
\{S[g](\xi, x), S[g](\eta, y)\}_{\mathrm{PB}}=\left[S[g](\xi, x)+\ln \xi, \delta_{\mathrm{DOP}}(y, \eta ; x, \xi)\right]_{*}, \tag{20}
\end{equation*}
$$

where $\delta_{\mathrm{DOP}}(;) \in \mathscr{G}^{*} \otimes \mathscr{G}$ denotes the kernel of the δ-function on the space of differential operator symbols:
$\delta_{\mathrm{DOP}}(x, \xi ; y, \eta)=\exp \left(\partial_{x} \partial_{\xi}\right)\left(\sum_{k=1}^{\infty} \xi^{-(k+1)} \eta^{k} \delta(x-y)\right)$.
Eq. (20) is a succinct expression of the Poisson-bracket realization of W_{∞}, which becomes manifest by rewriting (20) in the equivalent form:

$$
\begin{equation*}
\{\langle S[g] \mid X\rangle,\langle S[g] \mid Y\rangle\}_{\mathrm{PB}}=-\langle S[g] \mid[X, Y]\rangle+\langle\hat{s}(X) \mid Y\rangle \tag{22}
\end{equation*}
$$

for arbitrary fixed $X, Y \in \mathscr{G}=\mathscr{D O P}\left(\mathbf{S}^{1}\right)$. Alternatively, substituting into (20) (or (22)) the ξ-expansion of the pseudodifferential symbol $S[g](\xi, x)=\sum_{r \geqslant 2} \xi^{-r} S_{r}(x)$, one recovers the Poisson-bracket commutation relations for W_{∞} among the component fields $S_{r}(x)$ in the basis of ref. [14] (which is a "rotation" of the more customary W_{∞} basis of ref. [2]).
In particular, for the component field $S_{2}(x) \equiv(4 \pi / c) T_{--}(x)$ (the energy-momentum tensor component, cf. (15)) one gets from (20) the Poisson-bracket realization of the Virasoro algebra:
$\left\{S_{2}(x), S_{2}(y)\right\}_{\mathrm{PB}}=-\frac{4 \pi}{c}\left[2 S_{2}(x) \partial_{x} \delta(x-y)+\partial_{x} S_{2}(x) \delta(x-y)+\frac{1}{6} \partial_{x}^{3} \delta(x-y)\right]$.
The higher component fields $S_{r}(x), r=3,4, \ldots$ turn out to be quasi-primary conformal fields of spin r. The genuine primary fields $\mathscr{W}_{r}(x)(r \geqslant 3)$ are obtained from $S_{r}(x)$ by adding derivatives of the lower spin fields $S_{4}(x)(2 \leqslant q \leqslant r-1)$. For instance, for $\mathscr{W}_{3}(x)=S_{3}(x)-\frac{3}{2} \partial_{x} S_{2}(x)$, eq. (20) yields
$\left\{S_{2}(x), \mathscr{W}_{3}(y)\right\}_{\mathrm{PB}}=-\frac{4 \pi}{c}\left[3 \mathscr{W}_{3}(x) \partial_{x} \delta(x-y)+2 \partial_{x} \mathscr{W}_{3}(x) \delta(x-y)\right]$.

4. Noether and "hidden" symmetries of \mathbf{W}_{∞} gravity

The general group composition law (19) contains the whole information about the symmetries of the \mathbf{W}_{∞} geometric action (18). First, let us consider arbitrary infinitesimal left group translation. The corresponding variation of the action (18) is straightforwardly obtained from (19)
$\delta_{\epsilon}^{L} W[g] \equiv W[(1+\epsilon) \circ g]-W[g]=\frac{c}{4 \pi} \int \mathrm{~d} t \mathrm{~d} x \operatorname{Res}_{\xi}\left\{\left([\ln \xi, g] \circ g^{-1}\right)_{*} \circ \partial_{t} \epsilon\right\}$.
From (25) one finds that (18) is invariant under t-independent left group translations and the associated Noether conserved current is the generalized "schwarzian" $S[g]$ (10) whose components are the (quasi) primary conformal fields $S_{r}(x ; t)$ of $\operatorname{spin} r$.
Next, let us consider arbitrary right group translation. Now, from (19) the variation of the W_{∞} action (18) is given by

$$
\begin{align*}
& \delta_{\zeta}^{\mathrm{R}} W[g] \equiv W\left[g^{\circ}(1+\zeta)\right]-W[g]=-\frac{c}{4 \pi} \int \mathrm{~d} t \mathrm{~d} x \operatorname{Res}_{\xi}\left([\ln \xi, \zeta]_{*} \cdot Y_{t}\left(g^{-1}\right)\right) \tag{26}\\
& \quad=\frac{c}{4 \pi} \int \mathrm{~d} t \mathrm{~d} x \operatorname{Res}_{\xi}\left(\left[\ln \xi, Y_{t}\left(g^{-1}\right)\right]_{*} \circ \zeta\right), \tag{27}
\end{align*}
$$

where $Y_{t}\left(g^{-1}\right)$ denotes the Maurer-Cartan gauge field:
$Y_{t}\left(g^{-1}\right)=-g^{-1}{ }^{2} \partial_{t} g$.

Equality (27) implies the equations of motion *2:
$\left.\hat{s}\left(Y_{t}\left(g^{-1}\right)\right)\right|_{\text {on-shell }}=0$.
As a matter of fact, the off-shell relation (11) exhibits the full equivalence between the Noether conservation law $\partial_{t} S[g]=0$ (25) and the equations of motion (29).
On the other hand, equality (26) shows that the W_{∞} geometric action (18) is gauge-invariant under arbitrary time-dependent infinitesimal right group translations $g(\xi, x ; t) \rightarrow g(\xi, x ; t) \cdot(1+\xi(\xi, x ; t))$ which satisfy
$\hat{s}(\widetilde{\zeta}) \equiv-[\ln \xi, \widetilde{\zeta}]_{*}=0$.
For finite right group translations $k=\operatorname{Exp}(\widetilde{\zeta})$ the integrated form of (30) reads
$S[k] \equiv-\left([\ln \xi, k] \cdot k^{-1}\right)_{*}=0$.
The solutions of eqs. (30) and (31) form a subalgebra in $\mathscr{D O P P}\left(\mathrm{S}^{1}\right)$, and a subgroup in $\operatorname{DOP}\left(\mathrm{S}^{1}\right)$, respectively. From (16) one immediately concludes that the latter subgroup,
$G_{\text {stat }}=\{k ; S[k]=0\}$,
is precisely the stationary subgroup of the underlying coadjoint orbit $\mathscr{Q}_{\left(U_{0}=0, c\right)}$. The Lie algebra of (32),
$\mathscr{S}_{\text {stat }}=\left\{\tilde{\zeta} ; \hat{s}(\widetilde{\zeta}) \equiv-[\ln \xi, \widetilde{\zeta}]_{*}=0\right\}$,
is the maximal centerless ("anomaly-free") subalgebra of $\overline{\mathscr{D O P}}\left(\mathrm{S}^{1}\right)$, on which the cocycle (6) vanishes: $\omega\left(\tilde{\zeta}_{1}, \tilde{\zeta}_{2}\right)=-\left\langle\hat{s}\left(\tilde{\zeta}_{1}\right) \mid \tilde{\zeta}_{2}\right\rangle=0$ for any pair $\tilde{\zeta}_{1,2} \in \mathscr{\zeta}_{\text {stat }}$.
The full set of linearly independent solutions $\left\{\zeta^{(1, m)}(\xi, x)\right\}$ of $\hat{s}(\tilde{\zeta})=0$, comprising a basis in $\mathscr{G}_{\text {stat }}$ (33), can be written in the form
$\zeta^{(l, m)}(\xi, x)=\sum_{q=1}^{l}\binom{l}{q} \frac{(l-1)!(l+q)!}{(q-1)!(2 l)!} \frac{\xi^{q} x^{q+m}}{\Gamma(q+m+1)}$,
where $l=1,2, \ldots$, and $m=-l,-l+1, \ldots, l-1, l$.
The basis (34) identifies the stationary subalgebra $\mathscr{S}_{\text {sat }}$ (33) as the infinite-dimensional algebra $\operatorname{sl}(\infty ; \mathbb{R})$. Namely, $\mathscr{G}_{\text {stat }}$ decomposes (as a vector space) into a direct sum of irreducible representations $\mathscr{V}_{\mathrm{sl}}^{(1)}(2)$ of its $\mathrm{sl}(2 ; \mathbb{R})$ subalgebra with spin l and unit multiplicity: $\mathscr{S}_{\text {stat }}=\oplus_{l=1}^{\infty} \mathscr{V}_{\mathrm{sl}(2)}^{(l)}$. This sl($\left.2 ; \mathbb{R}\right)$ subalgebra is generated by the symbols $2 \zeta^{(1,1)}=\xi x^{2}, \zeta^{(1,0)}=\xi x$ and $\zeta^{(1,-1)}=\xi$. The subspaces $\mathscr{Y}_{\mathrm{sl}}^{(1)}$) are spanned by the symbols $\left\{\zeta^{(1, m)} ;\right.$ $l=$ fixed, $|m| \leqslant l\}$ with $\zeta^{(l, l)}$ being the highest-weight vectors:
$\left[\xi x^{2}, \zeta^{(l, t)}\right]=0, \quad\left[\xi x, \zeta^{(l, m)}\right]=m \zeta^{(l, m)}, \quad\left[\xi, \zeta^{(l, m)}\right]=\zeta^{(l, m-1)}$.
The Cartan subalgebra of $\mathrm{sl}(\infty ; \mathbb{R})$ is spanned by the subset $\left\{\zeta^{(l, 0)}, l=1,2, \ldots\right\}$ of symbols (34).
The above representation of $\operatorname{sl}(\infty ; \mathbb{R})$ in terms of symbols (34) is analogous to the construction of $\operatorname{sl}(\infty ; \mathbb{R})$ as "wedge" subalgebra $W_{\wedge}(\mu)$ of W_{∞} for $\mu=0[2,24]$, which in turn is isomorphic to the algebra A_{∞} of Kac [25].

Now, accounting for (33), (34), one can write down explicitly the solution to the equations of motion (29):
$\left.Y_{t}\left(g^{-1}\right)\right|_{\text {on-shell }}=\sum_{l=1}^{\infty} \sum_{|m| \leqslant l} J^{(l, m)}(t) \zeta^{(l, m)}(\xi, x)$,
with $\zeta^{(l, m)}$ as in (34). The coefficients $J^{(l, m)}(t)$ in (36) are arbitrary functions of t and represent the on-shell form of the currents of the "hidden" $\mathscr{G}_{\text {stat }} \equiv \operatorname{sl}(\infty ; \mathbb{R})$ Kac-Moody symmetry of $W[g]$ (18).

[^2]Indeed, upon right group translation with $\zeta_{(a)}=\sum a^{(l, m)}(x, t) \cdot \zeta^{(l, m)}(\xi, x)$ with arbitrary coefficient functions (zero order symbols) $a^{(l, m)}(x, t)$, one obtains from (26)
$\delta_{\zeta(a)}^{\mathrm{R}} W[g]=-\frac{c}{4 \pi} \int \mathrm{~d} t \mathrm{~d} x \sum_{l=1}^{\infty} \sum_{|m| \leqslant l} \partial_{x} a^{(l, m)}(x, t) \widetilde{J}^{(l, m)}(x, t)$,
$\tilde{J}^{(l, m)} \equiv \sum_{r=1}^{\infty}\left(-\partial_{x}\right)^{r-1}\left((-1)^{l l!(l+1)!} \frac{x^{m}}{\Gamma(m)}\left[Y_{t}\left(g^{-1}\right)\right]_{r}-\frac{1}{r+1} \partial_{x}\left[\zeta^{(l, m)} 。_{t}\left(g^{-1}\right)\right]_{r}\right)$.
The subscripts r in (38) and below indicate taking the coefficient in front of ξ^{r} in the corresponding symbol.
The Noether theorem implies from (37) that $\widetilde{J}^{(l, m)}(x, t)(38)$ are the relevant Noether currents corresponding to the symmetry of the W_{∞} action (18) under arbitrary right group $\operatorname{SL}(\infty ; \mathbb{R})$ translations. Clearly, $\tilde{J}^{(l, m)}(x, t)$ are $\operatorname{sl}(\infty ; \mathbb{R})$-valued and are conserved with respect to the "time-evolution" parameter $x \equiv x^{-}$:
$\left.\partial_{x} \widetilde{J}^{(l, m)}(x, t)\right|_{\text {on-shell }}=0$.
Substituting the on-shell expression (36) into (38) we get
$\left.\widetilde{J}^{(l, m)}(x, t)\right|_{\text {on-shell }}=\sum_{l=1}^{\infty} \sum_{|m| \leqslant l} K^{(l, m)\left(l^{\prime}, m^{\prime}\right)} J^{\left(l^{\prime}, m^{\prime}\right)}(t)$,
where $K^{(l, m)\left(l^{\prime}, m^{\prime}\right)}$ is a constant invariant symmetric $\operatorname{sl}(\infty ; \mathbb{R})$ tensor:
$K^{(l, m)\left(l^{\prime}, m^{\prime}\right)}=\sum_{r=1}^{\infty}\left(-\partial_{x}\right)^{r-1}\left(\left(\zeta^{\left(l^{\prime}, m^{\prime}\right)}\right)_{r} \operatorname{Res}_{\xi}\left[\ln \xi, \zeta^{(l, m)}\right]-\frac{1}{r+1} \partial_{x}\left[\zeta^{(l, m)}{ }_{0} \zeta^{\left(l^{\prime}, m^{\prime}\right)}\right]_{r}\right)$,
naturally representing the Killing metric of $\operatorname{sl}(\infty ; \mathbb{R})$.
The fact that the currents $J^{(1, m)}(t)$ in (36) generate a $\operatorname{sl}(\infty ; \mathbb{R})$ Kac-Moody algebra, can be shown most easily by considering infinitesimal right group translation $g \rightarrow g_{\circ}\left(\uparrow+\zeta_{\epsilon}\right)$ with $\zeta_{\epsilon}=\sum_{l, m} \epsilon^{(l, m)}(t) \zeta^{(l, m)}(\xi, x) \in$ $\operatorname{sl}(\infty ; \mathbb{R})$ on $Y_{i}\left(g^{-1}\right) \equiv-g^{-1} \circ \partial_{t} g$. Recall (cf. (37), (40)), that $J^{(t, m)}(t)$ are the corresponding Noether symmetry currents. From the cocycle property (12) one obtains
$\delta_{\zeta_{\epsilon}}^{\mathrm{R}} Y_{t}\left(g^{-1}\right) \equiv Y_{t}\left(\left(1-\zeta_{\epsilon}\right) \circ g^{-1}\right)-Y_{t}\left(g^{-1}\right)=-\partial_{t} \zeta_{\epsilon}+\left[Y_{t}\left(g^{-1}\right), \zeta_{\epsilon}\right]$,
which upon substitution of (36) yields
$\left.\delta_{\epsilon} J^{(l, m)}(t)=-\partial_{t} \epsilon^{(l, m)}(t)+f(l, m)\left(l^{\prime \prime}, m^{\prime \prime}\right) m^{\prime}\right) J^{\left(l^{\prime}, m^{\prime}\right)}(t) \epsilon^{\left(l^{\prime \prime}, m^{\prime \prime}\right)}(t)$.
Here $f\left(l l^{\left(l m^{\prime}, m^{\prime \prime}\right)}\left(l^{\prime \prime}, m^{\prime}\right)\right.$ denote the structure constants of $\operatorname{sl}(\infty ; \mathbb{R})$ in the basis $\zeta^{(l, m)}(34)$ (i.e., $\left[\zeta^{(l, m)}, \zeta^{\left(l^{\prime}, m^{\prime}\right)}\right]=$ $f\left(l^{\left(m^{\prime}, m^{\prime \prime}\right)}{ }^{\left(l^{\prime}, m^{\prime}\right)} \zeta^{\left(l^{\prime \prime}, m^{\prime \prime}\right)}\right)$.

Finally, let us also show that the canonical Noether energy-momentum tensor T_{++}(the Noether current corresponding to the symmetry of the W_{∞} action (18) under arbitrary rescaling of $t \equiv x^{+}$) automatically has the (classical) Sugawara form in terms of the "hidden" $\operatorname{sl}(\infty ; \mathbb{R})$ Kac-Moody currents $J^{(l, m)}(t)(36)$. Indeed, the variation of (18) under a reparametrization $t \rightarrow t+\rho(t, x)$ reads

$$
\begin{align*}
& \delta_{\rho} W[g]=-\frac{1}{4 \pi} \int \mathrm{~d} t \mathrm{~d} x \partial_{x} \rho(t, x) T_{++}(t, x), \tag{44}\\
& T_{++} \equiv \frac{1}{2 c} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{r+1} \partial_{x}^{r}\left(\left[Y_{t}\left(g^{-1}\right) \circ Y_{t}\left(g^{-1}\right)\right]_{r}+\frac{1}{r!} \operatorname{Res}_{\xi}\left(\partial_{\xi}^{r+1} Y_{t}\left(g^{-1}\right) \circ\left[\ln \xi, Y_{t}\left(g^{-1}\right)\right]\right)\right) . \tag{45}
\end{align*}
$$

Substituting (36) into (45) and accounting for (34), one easily gets the $\operatorname{sl}(\infty ; \mathbb{R})$ Sugawara representation of the energy-momentum tensor (45):
$\left.T_{++}(t, x)\right|_{\text {on-shell }}=\frac{1}{2 c} \sum_{(l, m),\left(l^{\prime}, m^{\prime}\right)} K^{(l, m)\left(l^{\prime}, m^{\prime}\right)} J^{(l, m)}(t) J^{\left(l^{\prime}, m^{\prime}\right)}(t)$,
where $K^{(l, m)\left(l^{\prime}, m^{\prime}\right)}$ is the $\mathrm{sl}(\infty ; \mathbb{R})$ Killing metric tensor (41).
In particular, substituting into (45) the restriction of $g(\xi, x ; t)$ to the Virasoro subgroup via (14), (15), we recover the well-known (classical) sl($2 ; \mathbb{R}$) Sugawara form of T_{++}in $D=2$ induced gravity [26].

5. Conclusions and outlook

According to the general discussion in ref. [15], the Legendre transform $\Gamma[y]=-W\left[g^{-1}\right]$ of the induced W_{∞}-gravity WZNW action (18) is the generating functional, when considered as a functional of $y \equiv Y_{t}\left(g^{-1}\right)$, of the quantum correlation functions of generalized schwarzians $S[g]$. Similarly, $W[J] \equiv-W_{\mathrm{DOP}\left(\mathrm{S}^{1}\right)}[g]$, when considered as a functional of $J \equiv-(c / 4 \pi) S[g]$, is the generating functional of all correlation functions of the currents $Y_{t}\left(g^{-1}\right)$. These correlation functions can be straightforwardly obtained, recursively in N, from the functional differential equations (i.e., Ward identities):
$\partial_{t} \frac{\delta \Gamma}{\delta y}+\left[\frac{\delta \Gamma}{\delta y}-\frac{c}{4 \pi} \ln \xi, y\right]_{*}=0, \quad \partial_{t} J+\left[\frac{\delta W}{\delta J}, J-\frac{c}{4 \pi} \ln \xi\right]_{*}=0$.
An interesting problem is to derive the W_{∞} analogue of the Knizhnik-Zamolodchikov equations [27] for the correlation functions $\left\langle g\left(\xi_{1}, x_{1} ; t_{1}\right) \ldots g\left(\xi_{N}, x_{N} ; t_{N}\right)\right\rangle$. To this end we need the explicit form of the symbol $r\left((\xi, x) ;\left(\xi^{\prime} \cdot x^{\prime}\right)\right) \in \mathscr{D O P P}\left(\mathbf{S}^{1}\right) \otimes \mathscr{D O P}\left(\mathbf{S}^{1}\right)$ of the classical r-matrix of W_{∞}. This issue will be dealt with in a forthcoming paper.
Another basic mathematical problem is the study of the complete classification of the coadjoint orbits of $\operatorname{DOP}\left(\mathrm{S}^{1}\right)$ and the classification of its highest weight irreducible representations.
Let us note that, in order to obtain the WZNW action of induced $W_{1+\infty}$ gravity along the lines of the present approach, one should start with the algebra of differential operator symbols containing a nontrivial zero order term in the ξ-expansion $X=X_{0}(x)+\sum_{k \geqslant 1} \xi^{k} X_{k}(x)$. In this case one can solve the "hidden" symmetry (i.e. the "anomaly" free subalgebra) equation $[\ln \xi, \zeta]_{(-)}=0$ and the result is the Borel subalgebra of $g l(\infty ; \mathbb{R})$ spanned by the symbols $\zeta^{(p, q)}=\xi^{p} x^{q}$ with $p \geqslant q$. The $\mathrm{W}_{1+\infty}$ WZNW action will have formally the same form as (18), however, now the meaning of the symbol $g^{-1}(\xi, x ; t)$ of the inverse group element is obscure due to the nontrivial ((ξ, x)-dependent) zero order term in the ξ-expansion of $g(\xi, x ; t)$.

Acknowledgement

It is a pleasure to thank S. Elitzur, V. Kac, D. Kazhdan, A. Schwimmer and A. Zamolodchikov for useful comments and illuminating discussion.

References

[^3][6] K. Yamagishi, Phys. Lett. B 259 (1991) 436;
F. Yu and Y.-S. Wu, Phys. Lett. B 263 (1991) 220.
[7] J. Avan and A. Jevicki, Mod. Phys. Lett. A 7 (1992) 357.
[8] H. Aratyn, L. Ferreira, J. Gomes and A. Zimmerman, University of Illinois preprint UICHEP-TH/92-1.
[9] I. Klebanov and A. Polyakov, Mod. Phys. Lett. A 6 (1991) 3273.
[10] E. Witten, Nucl. Phys. B 373 (1992) 187.
[11] E. Witten, Commun. Math. Phys. 141 (1991) 153.
[12] B. Feigin, Usp. Math. Nauk 35 (1988) 157;
V. Kac and P. Peterson, MIT preprint 27/87 (1987).
[13] A. Radul, Funct. Anal. Appl. 25 (1991) 33; Phys. Lett. B 265 (1991) 86;
B. Khesin and O. Kravchenko, Funct. Anal. Appl. 23 (1989) 78;
I. Vaysburd and A. Radul, Phys. Lett. B 274 (1992) 317.
[14] I. Bakas, B. Khesin and E. Kiritsis, Berkeley preprint LBL-31303 (1991).
[15] H. Aratyn, E. Nissimov and S. Pacheva, Phys. Lett. B 255 (1991) 359.
[16] A. Polyakov, Mod. Phys. Lett. A 2 (1987) 893;
A. Polyakov and A. Zamolodchikov, Mod. Phys. Lett. A 3 (1988) 1213.
[17] F. Treves, Introduction to pseudodifferential and Fourier integral operators, Vols. $1 \& 2$ (Plenum, New York, 1980).
[18] H. Aratyn, E. Nissimov, S. Pacheva and A.H. Zimmerman, Phys. Lett. B 240 (1990) 127.
[19] H. Aratyn, E. Nissimov and S. Pacheva, Phys. Lett. B 251 (1990) 401; Mod. Phys. Lett. A 5 (1990) 2503.
[20] A.A. Kirillov, Elements of the theory of representations (Springer, Berlin, 1976);
B. Kostant, Lecture Notes in Mathematics 170 (1970) 87;
J.M. Souriau, Structure des systèmes dynamiques (Dunod, Paris, 1970);
R. Abraham and J. Marsden, Foundations of mechanics (Benjamin, MA, 1978);
V. Guillemin and S. Sternberg, Symplectic techniques in physics (Cambridge U.P., Cambridge, 1984).
[21] B. Dubrovin, A. Fomenko and S. Novikov, Modern geometry. Methods of homology (Nauka, Moscow, 1984).
[22] A. Alekseev and S.L. Shatashvili, Nucl. Phys. B 323 (1989) 719.
[23] A. Polyakov and P. Wiegmann, Phys. Lett. B 131 (1983) 121; B 141 (1984) 223.
[24] C. Pope, X. Shen, K.-W. Xu and K. Yuan, Nucl. Phys. B 376 (1992) 52.
[25] V. Kac, Infinite dimensional Lie algebras (Cambridge U.P., Cambridge, 1985).
[26] A. Polyakov, in: Fields, strings and critical phenomena, eds. E. Brézin and J. Zinn-Justin (Elsevier, Amsterdam, 1989).
[27] V. Knizhnik and A. Zamolodchikov, Nucl. Phys. B 247 (1984) 83.

[^0]: ${ }^{1}$ On leave from Institute of Nuclear Research and Nuclear Energy, BG-1784 Sofia, Bulgaria.

[^1]: ${ }^{\# 1}$ Let us recall [17] the correspondence between (pseudo) differential operators and symbols: $X(\xi, x)=\sum_{k} \xi^{\xi} X_{k}(x) \leftrightarrow \hat{X}=\sum_{k} X_{k}(x)\left(-i \partial_{x}\right)^{k}$.

[^2]: \#2 The restriction of eq. (29) to the Virasoro subgroup via (14), (15) takes the well known form [16] $\partial_{x}^{3}\left(\partial_{t} f \partial_{x} f\right)=0$, and $f(x ; t)$ is the inverse Virasoro group element: $f(F(x ; t) ; t)=x$.

[^3]: [1] C. Pope, L. Romans and X. Shen, Phys. Lett. B 236 (1990) 173;
 E. Bergshoeff, C. Pope, L. Romans, E. Sezgin and X. Shen, Phys. Lett. B 245 (1990) 447.
 [2] C. Pope, L. Romans and X. Shen, Nucl. Phys. B 339 (1990) 191.
 [3] I. Bakas, Phys. Lett. B 228 (1989) 57; Commun. Math. Phys. 134 (1990) 487.
 [4] A. Zamolodchikov, Theor. Math. Phys. 65 (1985) 1205.
 [5] Q. Han-Park, Phys. Lett. B 236 (1990) 429; B 238 (1990) 208;
 K. Yamagishi and G. Chapline, Class. Quantum Grav. 8 (1991) 1.

